LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN
Nama : Refika Rachmawaty
Kelas : X IPS 1
No absen :
LUAS SEGI-n BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN
Luas Segi n Beraturan
Pada segi n beraturan
Setiap segi n beraturan bisa kita bagi menjadi n buah segitiga yang kongruen
Setiap titik sudut pada segi n beraturan bisa dilalui sebuah lingkaran, lingkaran ini disebut lingkaran luar segi n. Semuat titik sudut akan dilewati lingkaran (tidak ada yang tertinggal).
Menghitung luas segi n beraturan akan lebih mudah jika diketahui jari-jari lingkaran luarnya
Setiap segi n bisa dibagi menjadi n buah segitiga yang kongruen seperti pada gambar di atas.
Selanjutnya kita ambil salah satu segitiganya
Besar sudut A adalah
Luas segitiga adalah
LΔ = ½ .R.R sin A
Luas segi n beraturan adalah
Ln = n. LΔ
Rumus ini merupakan rumus luas segi n beraturan yang diketahui jari-jari lingkaran luarnya.
Bagaimana jika diketahui sisinya ?
Pertama kita cari dulu hubungan antara jari-jari lingkaran luar (R) dengan sisinya (a)
Dengan aturan cosinus maka
a2 = R2 + R2 — 2R.R cos A
a2 = 2R2 — 2R2 cos A
a2 = R2(2 — 2cos A)
Luas segi n :
Jadi luas segi n beraturan yang panjang sisinya a adalah
Komentar
Posting Komentar