Nama : Refika Rachmawaty Kelas : X IPS 1 No absen : 28 SUDUT-SUDUT BERELASI PADA KUADRAN I, II, III, IV Rumus Sudut Berelasi Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif. Sudut Berelasi di Kuadran I Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° − α) = cos α cos (90° − α) = sin α tan (90° − α) = cot α Sudut Berelasi di Kuadran II Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut : sin (90° + α) = cos α cos (90° + α) = -sin α tan (90° + α) = -cot α sin (180° − α) = sin α cos (180° − α) = -cos α tan (180° − α) = -tan α Sudut Berelasi Kuadran III ...
Nama : Refika Rachmawaty Kelas : X IPS 1 / 28 fungsi kuadrat, rasional dan irasional Fungsi Rasional Fungsi Rasional Fungsi rasional merupakan fungsi yang mempunyai bentuk umum Dengan p dan d adalah polinomial dan d(x) ≠ 0. Domain dari V(x) merupakan seluruh bilangan real, kecuali pembuat nol dari d. Adapun fungsi rasional yang paling sederhana, yakni fungsi y = 1/ x dan fungsi y = 1/ x ². Di mana keduanya mempunyai pembilang konstanta sertaa penyebut poli...
Nama : Refika Rachmawaty Kelas : XI IPS 1 No Absen : 30 Rama Fauzia INTERGRAL FUNGSI ALJABAR Apa Itu Integral Tak Tentu? Integral merupakan anti turunan atau kebalikan dari turunan yang berfungsi untuk menentukan daerah, volume, titik pusat, dan lainnya. Kalau suatu fungsi f(x) dibalik menjadi f’(x) maka itu merupakan turunan. Nah, jika f’(x) dibalik lagi menjadi f(x), maka itu merupakan integral. Sebelum ke rumus integral tak tentu, elo perlu paham konsep turunan nih. Gue kasih bayangin dikit tentang turunan secara umum. y= X3 Turunan dari soal ini berapa? dydx = 3×2 Setelah diturunkan seperti ini, lalu dikali silang. dy = 3×2 dx d(X3) = 3×2 dx Bisa dilihat ya, y diganti dengan X3 Nah, dari sini bisa kita simpulkan ya cara mencari turunan bentuknya akan seperti ini nih. Turunan dari X2 akan menjadi d(X2) = 2x dx Oke, konsep turunan udah ingat lanjut ke materi integral tak tentu lagi. Coba deh elo perha...
Komentar
Posting Komentar